lunes, 22 de octubre de 2012

PROYECTO TECNOLOGICO "MANO HIDRAULICA"

                                          

PROYECTO TECNOLOGICO

INTEGRANTES:

  • CAMILA ALDANA                                                
  • PAULA GONZALEZ
  • CAMILA RUIZ                                                   CURSO:  9-G                                                    

DEFINICION DEL PROBLEMA:
Como diseñar y construir un prototipo de una mano humana utilizando operadores neumáticos, hidráulicos y eléctricos , hecha con materiales q se puedan reutilizar.

INTRODUCCIÓN:
Nuestro proyecto consiste en construir una mano robotica que realize las funciones básicas de una mano humana basándose en los principios generales de la neumática y la hidráulica para lo q es necesario trabajar sobre estos cambios.
Analizar los materiales elegidos para le elaboración de nuestro proyecto y poder llevar a un producto final con bases tecnologicas y con calidad.

OBJETIVOS:

  • GENERALES:
Nuestro objetivo principal es construir una mano robotica basándose en la neumática y la hidráulica y en sus principios basicos, ademas en los conocimientos aprendidos en años anteriores.
  • ESPECÍFICOS:
Investigar sobre hidraulica y neumatica para poder empezar la elaboracion de una mano robotica a base de la presion del agua.
Observar y verificar los recursos (economicos, materiales, etc) que vamos a manejar y utilizar en el proyecto
determinar como se inicia el proyecto y la construccion
JUSTIFICACION:
Nuestro proyecto consiste en elavorar un prototipo de una mano humana por que es un proyecto muy interesante que nos ayudara al rapido entendimiento de estos conceptos basicos
Tambien seria util brindarles a los estudiantes pertenecientes a la institucion una opcion mas economica de este proyesto
Este proyecto beneficia a los estudiantes facilitandoles el aprendizaje.

CONSULTAS:

LEY DE PASCAL:
en física, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático francés Blaise Pascal (1623–1662) que se resume en la frase: la presion ejercida por un fluido incompresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido.
El principio de Pascal puede comprobar utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo tanto con la misma presión.
También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas, en los elevadores hidráulicos y en los frenos hidráulicos.
aplicacion:
El principio de Pascal puede ser interpretado como una consecuencia de la ecuación fundamental de la hidrostática y del carácter altamente incompresible de los líquidos. En esta clase de fluidos la densidad es prácticamente constante, de modo que de acuerdo con la ecuación:
Donde:, presión total a la profundidad., presión sobre la superficie libre del fluido., densidad del fluido., aceleración de la gravedad., Altura, medida en Metros.
La presión se define como la fuerza ejercida sobre unidad de área p = F/A. De este modo obtenemos la ecuación: F1/A1 = F2/A2, entendiéndose a F1 como la fuerza en el primer pistón y A1 como el área de este último. Realizando despejes sobre esta ecuación básica podemos obtener los resultados deseados en la resolución de un problema de física de este orden.
Si se aumenta la presión sobre la superficie libre, por ejemplo, la presión total en el fondo ha de aumentar en la misma medida, ya que el término ρgh no varía al no hacerlo la presión total. Si el fluido no fuera incompresible, su densidad respondería a los cambios de presión y el principio de Pascal no podría cumplirse. Por otra parte, si las paredes del recipiente no fuesen indeformables, las variaciones en la presión en el seno del líquido no podrían transmitirse siguiendo este principio.

PRINCIPIO DE ARQUIMEDES:
El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerza recibe el nombre de empuje hidrostáticoo de Arquímedes, y se mide en newtons (en el SI). El principio de Arquímedes se formula así:
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales y descrito de modo simplificado ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.

ley de boyle:
La Ley de Boyle-Mariotte (o Ley de Boyle), formulada por Robert Boyle y Edme Mariotte, es una de las leyes de los gases idealesque relaciona el volumen y la presión de una cierta cantidad de gas mantenida a temperatura constante. La ley dice que el volumen es inversamente proporcional a la presión:
donde  es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante  para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:
donde:

Además si despejamos cualquier incógnita se obtiene lo siguiente:



ley de ber noulli:
El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un flujo laminar moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica(1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:
  1. Cinética: es la energía debida a la velocidad que posea el fluido.
  2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea.
  3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.
La siguiente ecuación conocida como "Ecuación de Bernoulli" (Trinomio de Bernoulli) consta de estos mismos términos.


NEUMATICA:
La neumática (del griego πνεῦμα "aire") es la tecnología que emplea el aire comprimido como modo de transmisión de la energía necesaria para mover y hacer funcionar mecanismos. El aire es un material elástico y, por tanto, al aplicarle una fuerza se comprime, mantiene esta compresión y devuelve la energía acumulada cuando se le permite expandirse, según dicta la ley de los gases ideales.

Mandos neumáticos

Los mandos neumáticos están constituidos por elementos de señalización, elementos de mando y un aporte de trabajo. Los elementos de señalización y mando modulan las fases de trabajo de los elementos de trabajo y se denominan válvulas. Los sistemas neumáticos e hidráulicos están constituidos por:
  • Elementos de información.
  • Órganos de mando.
  • Elementos de trabajo.
  • Elementos artísticos.
Para el tratamiento de la información de mando es preciso emplear aparatos que controlen y dirijan el fluido de forma prestablecida, lo que obliga a disponer de una serie de elementos que efectúen las funciones deseadas relativas al control y dirección del flujo del aire comprimido.
En los principios de la automatización, los elementos rediseñados se mandan manual o mecánicamente. Cuando por necesidades de trabajo se precisaba efectuar el mando a distancia, se utilizan elementos de comando por símbolo neumático (cuervo).
Actualmente, además de los mandos manuales para la actuación de estos elementos, se emplean para el comando procedimientos servo-neumáticos, electro-neumáticos y automáticos que efectúan en su totalidad el tratamiento de la información y de la amplificación de señales.
La gran evolución de la neumática y la hidráulica han hecho, a su vez, evolucionar los procesos para el tratamiento y amplificación de señales, y por tanto, hoy en día se dispone de una gama muy extensa de válvulas y distribuidores que nos permiten elegir el sistema que mejor se adapte a las necesidades.
Hay veces que el comando se realiza manualmente, y otras nos obliga a recurrir a la electricidad (para automatizar) por razones diversas, sobre todo cuando las distancias son importantes y no existen circunstancias adversas.
Las válvulas en términos generales, tienen las siguientes misiones:
  • Distribuir el fluido
  • Regular caudal
  • Regular presión
Las válvulas son elementos que mandan o regulan la puesta en marcha, el paro y la dirección, así como la presión o el caudal del fluido enviado por el compresor o almacenado en un depósito. Ésta es la definición de la norma DIN/ISO 1219 conforme a una recomendación del CETOP (Comité Européen des Transmissions Oléohydrauliques et Pneumatiques).
Según su función las válvulas se subdividen en 5 grupos:
  1. Válvulas de vías o distribuidoras
  2. Válvulas de bloqueo
  3. Válvulas de presión
  4. Válvulas de caudal
  5. Válvulas de cierre
HIDRAULICA:
La hidráulica es una rama de la física y la ingeniería que se encarga del estudio de las propiedades mecánicas de los fluidos. Todo esto depende de las fuerzas que se interponen con la masa (fuerza) y empuje de la misma.
La palabra hidráulica viene del griego ὑδϱαυλικός (hydraulikós) que, a su vez, viene de tubo de agua", palabra compuesta por ὕδωϱ (agua) y αὐλός (tubo). Aplicación de la mecánica de fluidos en ingeniería, usan dispositivos que funcionan con líquidos, por lo general agua y aceite como las maquinas ejemplo: caladora, carros, ETC
Operadores hidraulicos:
  • rueda hidraulica
  • bomba hidraulica
  • transmision de energia
  • freno hidraulico
  • direccion hidraulica

LINEA DEL TIEMPO DE LA NEUMATICA:
Ahora se presenta una pequeña línea del tiempo sobre la historia de la neumática.2500 a.C.
–Muelles de soplado1500 a.c.
–Fuelle de mano y de pie (fundición no ferrosa)s I. a.C.
–el Griego KTesibios inventa el cañón neumáticos. XVII - Estudio de los gases: Torricelli, Pascal, Mariotte, Boyle, GayLussac1688
–Máquinas de émbolos (Papín)1762
–Cilindro soplante (John Smeaton)1776
–Prototipo compresor (John Wilkinson)s. XIX
–Se empieza a usar la neumática en la industria de forma sistémica1857
–Perforación túnel Mont Celis1869
–Freno de aire para FFCC1880
–Primer martillo neumático1888
–Red de distribución de aire en Paríss. XX
–Incorporación de la neumática en mecanismos y automatización
LINEA DEL TIEMPO DE LAHIDRAULICA:

caracterizado por que su caja comprende un armazón provisto de recipientes para perfumes y un mecanismo electrónico para la aplicación de cantidades reguladas de perfume a través de un teclado utilizando monedas o billetes. 2.- Dispensador de perfumes para la utilización de cantidades mínimas controladas, de acuerdo a la reindivicación 1, caracterizado por que la caja comprende un armazón es a modo de varias boquillas o pistolas, permitiendo la utilización o aplicación de perfumes. 3.- Dispensador de perfumes para la utilización de cantidades mínimas controladas de acuerdo a la reivindicación 1 y 2 caracterizado por que la descarga o aplicación del perfume con una cantidad exacta y se hace con la boquilla o pistola. 4.- Dispensador de perfumes para la utilización de cantidades mínimas controladas de acuerdo a la reindivicaciones 1, 2 y 3 caracterizado por que los recipientes son recambiables o recargables y su contenido (perfumes) puede ser variado. 5.- Dispensador de perfumes para la utilización de cantidades mínimas controladas de acuerdo a las reivindicaciones 1, 2, 3 y 4 caracterizado por que el funcionamiento del dispensador para la selección y aplicación del perfume se establece mediante el sistema electrónico.6.- Dispensador de perfumes para la utilización de cantidades mínimas controladas de acuerdo a las reivindicaciones 1, 2, 3, 4 y 5 caracterizado por que el funcionamiento y puesta en marcha del sistema electrónico se inicia con la utilización de monedas o billetes. .
AEROSOL:
Un aerosol es un conjunto de partículas microscópicas, sólidas o líquidas, que se encuentran en suspensión en un gas.
En el contexto de la contaminación del aire, un aerosol se refiere a materia particular fina, de tamaño mayor que una molécula pero lo suficientemente pequeña como para permanecer en suspensión en la atmósfera durante al menos unas horas.
El término aerosol también se emplea con frecuencia para referirse a un bote presurizado (pulverizador), diseñado para liberar un chorro fino de materiales como pintura, etc. También ha sido asociado, de manera errónea, con el gas (propelente) empleado para expulsar el material contenido en el pulverizador.

DISPENSADOR DE PERFUME:
1.- Dispensador de perfumes para la utilización de cantidades mínimas controladas

COMPRESOR:
Un compresor es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos llamados compresibles, tal como lo son los gases y los vapores. Esto se realiza a través de un intercambio de energía entre la máquina y el fluido en el cual el trabajo ejercido por el compresor es transferido a la sustancia que pasa por él convirtiéndose en energía de flujo, aumentando su presión y energía cinética impulsándola a fluir.
Al igual que las bombas, los compresores también desplazan fluidos, pero a diferencia de las primeras que son máquinas hidráulicas, éstos son máquinas térmicas, ya que su fluido de trabajo es compresible, sufre un cambio apreciable de densidad y, generalmente, también de temperatura; a diferencia de los ventiladores y los sopladores, los cuales impulsan fluidos compresibles, pero no aumentan su presión, densidad o temperatura de manera considerable.

Utilización

Los compresores son ámpliamente utilizados en la actualidad en campos de la ingeniería y hacen posible nuestro modo de vida por razones como:
  • Son parte importantísima de muchos sistemas de refrigeración y se encuentran en cada refrigerador casero, y en infinidad de sistemas de aire acondicionado.
  • Se encuentran en sistemas de generación de energía eléctrica, tal como lo es el Ciclo Brayton.
  • Se encuentran en el interior muchos "motores de avión", como lo son los turborreactores y hacen posible su funcionamiento.
  • se pueden comprimir gases para la red de alimentación de sistemas neumáticos, los cuales mueven fábricas completas.
  • Tipos de compresores:
Funcionamiento de un compresor axial.
Clasificación según el método de intercambio de energía: Hay diferentes tipos de compresores de aire, pero todos realizan el mismo trabajo: toman aire de la atmósfera, lo comprimen para realizar un trabajo y lo regresa para ser reutilizado.
  • El compresor de émbolo: Es un compresor de aire simple. . Un mango impulsado por un motor eléctrico es rotado para levantar y bajar el émbolo dentro de una cámara. En cada movimiento hacia abajo del émbolo, el aire es introducido a la cámara mediante una válvula. En cada movimiento hacia arriba del émbolo, se comprime el aire y otra válvula es abierta para comprimir dichas moléculas de aire; durante este movimiento la primera válvula mencionada se cierra. El aire comprimido es guiado a un tanque de reserva. Este tanque permite el transporte del aire mediante distintas mangueras en el compresor. La mayoría de los compresores de aire de uso doméstico son de este tipo.
  • El compresor de tornillo: Aún más simple que el compresor de émbolo, el compresor de tornillo también es impulsado por motores eléctricos. La diferencia principal radica es que el compresor de tornillo utiliza dos tornillos largos para comprimir el aire dentro de una cámara larga. Para evitar el daño de los mismos tornillos, aceite es insertado para mantener todo el sistema lubricado. El aceite es mezclado con el aire en la entrada de la cámara y es transportado al espacio entre los dos tornillos rotadores. Al salir de la cámara, el aire y el aceite pasan a través de un largo separador de aceite donde el aire ya pasa listo a través de un pequeño orificio filtrador. El aceite es enfriado y reusado mientras que el aire va al tanque de reserva para ser utilizado para un trabajo.
  • Sistema Pendular Taurozzi
  • Reciprocantes o Alternativos: utilizan pistones (sistema bloque-cilindro-émbolo como los motores de combustión interna). Abren y cierran válvulas que con el movimiento del pistón aspira/comprime el gas. Es el compresor más utilizado en potencias pequeñas. Pueden ser del tipo herméticos, semi-hermeticos o abiertos. Los de uso domestico son hermeticos, y no pueden ser intervenidos para repararlos. los de mayor capacidad son semi-hermeticos o abiertos, que se pueden desarmar y reparar.
  • de Espiral (Orbital, Scroll)
  • Rotativo-Helicoidal (Tornillo, Screw): la compresión del gas se hace de manera continua, haciéndolo pasar a través de dos tornillos giratorios. Son de mayor rendimiento y con una regulación de potencia sencilla, pero su mayor complejidad mecánica y costo hace que se emplee principalmente en elevadas potencias, solamente.
  • Rotodinámicos o Turbomáquinas: Utilizan un rodete con palas o álabes para impulsar y comprimir al fluido de trabajo. A su vez éstos se clasifican en:
    • Axiales
    • Radiales


GATO HIDRAULICO:
Los gatos hidráulicos son usualmente usados únicamente por vulcanizadores o bien mecánicos, ya que no se consideran gatos convencionales de emergencia para transportar en el propio vehículo. Esto se debe a que el gato hidráulico require una atención y utilización más especializada, ya que es necesario seleccionar las condiciones del suelo, el punto exacto donde levantar el objeto y asegurarse de la estabilidad del mismo cuando el gato hidráulico sea extendido. Un gato hidráulico usa un fluido, el cual es incomprimible, que es impulsado a un cilindro mediante el émbolo de una bomba. El aceite es usado debido a su capacidad de auto-lubricarse y a su estabilidad. Cuando el émbolo va hacia atrás, arrastra aceite fuera de la reserve a través de una válvula para ser introducido a la cámara de la bomba. Cuando el émbolo va hacia adelante, empuja el aceite mediante una descarga de la válvula hacia el cilindro. La válvula de succión se encuentra al lado de cámara de la bomba y se abre con cada movimiento del émbolo. La válvula de descarga está fuera de la cámara y se abre cuando el aceite es enviado al cilindro. En este punto, la válvula de succión es impulsada y la presión del aceite crece en el cilindro.Es un gato que solo tiene Diana.

FRENO DE AIRE:
El freno neumático es un tipo de freno cuyo accionamiento se realiza mediante aire comprimido. Se utiliza principalmente en trenes, camiones,autobuses y maqiunaria pesada.
Utiliza pistones que son alimentados con depósitos de aire comprimido mediante un compresor, cuyo control se realiza mediante válvulas. Estos pistones actúan como prensas neumáticas contra los tambores o discos de freno.
El primer freno neumático factible para ferrocarriles fue inventado en los años 1860 por George Westinghouse.


FRENO HIDRAULICO:
El Freno hidráulico es el que aprovecha la acción multiplicadora del esfuerzo ejercido sobre un líquido oleoso incompresible.

Funcionamiento: Los frenos hidráulicos utilizan la presión de un líquido (presión hidráulica) para forzar las zapatas de freno hacia fuera, contra las tamboras. Presenta esquemáticamente un sistema típico de frenos hidráulicos. El sistema consta esencialmente de dos componentes: el pedal del freno con un cilindro maestro y el mecanismo de freno de ruedas, junto con los tubos o conductos correspondientes y las piezas de sujeción.
Al funcionar, el movimiento del pedal del freno fuerza a un pistón para que se mueva en el cilindro maestro. Esto aplica presión a un líquido delante del pistón. Obligándolo a pasar – bajo presión – a través de los conductos de freno hacia los cilindros de ruedas. Cada cilindro de rueda tiene dos pistones, como se aprecia. Cada pistón está acoplado a una de las zapatas de freno mediante un pasador accionador. Por tanto, cuando el líquido es forzado al interior de los cilindros de ruedas, los pistones resultan empujados hacia fuera. Este movimiento fuerza las zapatas también hacia fuera, poniéndolas en contacto con la tambora.

MANO HUMANA:
Huesos de la mano:                                                        Musculos de la mano humana:                      









nervios de la mano:                         venas y arterias de la mano:   

                                             ELABORACION “MANO HIDRAULICA”


  • MATERIALES:
  • Agua                                                    

  • Jeringas ( 5 )
  • carton paja ( 2 o 3 octavos )
  • base de madera ( 20*20cm )
  • mangueras ( 1.50 cm  )
  • papel
  • palos de paleta ( 5 )





MEDIOS DE UNION:
  • Elasticos de goma
  • Silicona
  • Pegante

PROCEDIMIENTO:
  • En la base de madera pegar con silicona liquida las jeringas en la parte inferior para fijarlas
  • En el carton paja dibujar el contorno de la mano por la parte frontal, los lados,etc.
  • Presizar la medida de agua en cada jeringa diferenciando los tamaños de las falanges
  • Cortar los palitos de paleta de acuerdo con las medidas hechas de una mano humana
  • Insertar las mangueras y as falanges en la mano
  • Fijar con silicon la mano a la base de madera y/o icopor

  • FUNCIONAMIENTO:

  • Al insertar agua en las mangueras, los dedos de la mano se estiraran en posicion normal a la que llamaremos pocision inicial
  • Al extraer el agua de las mangueras por medio de las jeringas los dedos de contaren en foma de puño a la que llamaremos posicion finial y esto sucederá gracias los palos de paleta q toman la forma de las falanges y permiten la forma de puño al contraerse los dedos


DIBUJO PROTOTIPO:



historia de la electricidad:
La historia de la electricidad se refiere al estudio y uso humano de la electricidad, al descubrimiento de sus leyes como fenómeno físico y a la invención de artefactos para su uso práctico.
El fenómeno en sí, fuera de su relación con el observador humano, no tiene historia; y si se la considerase como parte de la historia natural, tendría tanta como el tiempo, el espacio, lamateria y la energía. Como también se denomina electricidad a la rama de la ciencia que estudia el fenómeno y a la rama de la tecnología que lo aplica, la historia de la electricidad es la rama de la historia de la ciencia y de la historia de la tecnología que se ocupa de su surgimiento y evolución.
Uno de sus hitos iniciales puede situarse hacia el año 600 a. C., cuando el filósofo griego Tales de Mileto observó que frotando una varilla de ámbar con una piel o con lana, se obtenían pequeñas cargas (efecto triboeléctrico) que atraían pequeños objetos, y frotando mucho tiempo podía causar la aparición de una chispa. Cerca de la antigua ciudad griega de Magnesia se encontraban las denominadas piedras de Magnesia, que incluían magnetita. Los antiguos griegos observaron que los trozos de este material se atraían entre sí, y también a pequeños objetos de hierro. Las palabras magneto (equivalente en español a imán) y magnetismo derivan de ese topónimo.

corriente alterna:
Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal , puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
corriente continua:
La corriente continua o corriente directa es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna (CA en español, AC en inglés), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección (es decir, los terminales de mayor y de menor potencial son siempre los mismos). Aunque comúnmente se identifica la corriente continua con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.
También se dice corriente continua cuando los electrones se mueven siempre en el mismo sentido, el flujo se denomina corriente continua y va (por convenio) del polo positivo al negativo.
ley de ohm:
La ley de Ohm establece que la intensidad eléctrica que circula entre dos puntos de uncircuito eléctrico es directamente proporcional a la tensión eléctrica entre dichos puntos, existiendo una constante de proporcionalidad entre estas dos magnitudes. Dicha constante de proporcionalidad es la conductancia eléctrica, que es inversa a la resistencia eléctrica.
La ecuación matemática que describe esta relación es:
donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios,G es la conductancia en siemens y R es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que la R en esta relación es constante, independientemente de la corriente.1
Esta ley tiene el nombre del físico alemán Georg Ohm, que en un tratado publicado en 1827, halló valores de tensión y corriente que pasaba a través de unos circuitos eléctricos simples que contenían una gran cantidad de cables. Él presentó una ecuación un poco más compleja que la mencionada anteriormente para explicar sus resultados experimentales. La ecuación de arriba es la forma moderna de la ley de Ohm.

ley de coulomb:
La ley de Coulomb puede expresarse como:
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
La constante de proporcionalidad depende de la constante dieléctrica del medio en el que se encuentran las cargas.
Charles-Augustin de Coulomb desarrolló la balanza de torsión con la que determinó las propiedades de la fuerza electrostática. Este instrumento consiste en una barra que cuelga de una fibra capaz de torcerse. Si la barra gira, la fibra tiende a hacerla regresar a su posición original, con lo que conociendo la fuerza de torsión que la fibra ejerce sobre la barra, se puede determinar la fuerza ejercida en un punto de la barra. La ley de Coulomb también conocida como ley de cargas tiene que ver con las cargas eléctricas de un material, es decir, depende de si sus cargas son negativas o positivas.
Variación de la Fuerza de Coulomb en función de la distancia.
En la barra de la balanza, Coulomb colocó una pequeña esfera cargada y a continuación, a diferentes distancias, posicionó otra esfera también cargada. Luego midió la fuerza entre ellas observando el ángulo que giraba la barra.

resistencia:
Se denomina resistor al componente electrónico diseñado para introducir unaresistencia eléctrica determinada entre dos puntos de un circuito. En el propio argot eléctrico y electrónico, son conocidos simplemente como resistencias. En otros casos, como en las planchas, calentadores, etc., se emplean resistencias para producir calor aprovechando el efecto Joule.
Es un material formado por carbón y otros elementos resistivos para disminuir la corriente que pasa. Se opone al paso de la corriente. La corriente máxima en un resistor viene condicionada por la máxima potencia que pueda disipar su cuerpo. Esta potencia se puede identificar visualmente a partir del diámetro sin que sea necesaria otra indicación. Los valores más comunes son 0,25 W, 0,5 W y 1 W.
Existen resistencias de valor variable, que reciben el nombre de potenciómetros.

código de colores:
El código de colores se utiliza en electrónica para indicar los valores de los componentes electrónicos. Es muy habitual en lasresistencias pero también se utiliza para otros componentes como los condensadores, los inductores, díodos y otros. Hay un código específico para identificar los pares de hilos de un cable, véase Código de colores de 25 pares.
Este código de colores fue creado los primeros años de la década de 1920 en Estados Unidos por la Radio Manufacturer's Association, hoy parte de la Electronic Industries Alliance , y fue aceptado por la Comisión Electrónica Internacional.
En un principio se optó por pintar con colores el cuerpo, el lado y un punto (resistencias) o tres puntos (condensadores), de un código de colores representando las cifras del 0 al 9 (basado en la escala del arco iris para que fuera más fácil de memorizar), por la ventaja que representaba para los componentes electrónicos el poder pintar su valor sin tener que imprimir ningún texto.
Si el valor de los componentes estuviera impreso (tanto texto o como puntos de color) sobre un cuerpo cilíndrico, al soldarlos en el chasis (hoy circuito impreso) el valor podría quedar oculto. Por ello y para poder ver bien su valor desde cualquier dirección, pasó a ser codificado con franjas anulares de color.
diodos:
Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un solo sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos. El diodo de vacío (que actualmente ya no se usa, excepto para tecnologías de alta potencia) es untubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo.
De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctricamuy pequeña. Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.

condensador:
Un condensador (en inglés, capacitor,1 2 nombre por el cual se le conoce frecuentemente en el ámbito de la electrónica y otras ramas de la física aplicada), es un dispositivo pasivo, utilizado en electricidad y electrónica, capaz de almacenarenergía sustentando un campo eléctrico. Está formado por un par de superficiesconductoras, generalmente en forma de láminas o placas, en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra) separadas por un material dieléctrico o por el vacío. Las placas, sometidas a una diferencia de potencial, adquieren una determinada carga eléctrica, positiva en una de ellas y negativa en la otra, siendo nula la variación de carga total.
Aunque desde el punto de vista físico un condensador no almacena carga ni corriente eléctrica, sino simplemente energía mecánica latente; al ser introducido en un circuitose comporta en la práctica como un elemento "capaz" de almacenar la energía eléctrica que recibe durante el periodo de carga, la misma energía que cede después durante el periodo de descarga.

transistores:
El transistor es un dispositivo electrónico semiconductor que cumple funciones deamplificador, oscilador, conmutador o rectificador. El término «transistor» es la contracción en inglés de transfer resistorresistencia de transferencia»). Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario: radios,televisores, reproductores de audio y video, relojes de cuarzo, computadoras, lámparas fluorescentes, tomógrafos, teléfonos celulares, etc
transformador :
Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo lapotencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.

El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, por medio de interacción electromagnética. Está constituido por dos o más bobinas de material conductor, aisladas entre sí eléctricamente y por lo general enrolladas alrededor de un mismo núcleo de material ferromagnético. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo.
multímetro:
Un multímetro, también denominado polímetro,[1] tester o multitester, es un instrumento eléctrico portátil para medir directamente magnitudes eléctricas activas como corrientes y potenciales (tensiones) o pasivas como resistencias, capacidades y otras. Las medidas pueden realizarse para corriente continua o alterna y en varios márgenes de medida cada una. Los hay analógicos y posteriormente se han introducido los digitales cuya función es la misma (con alguna variante añadida).
partes:
Se presentan en una caja protectora
Proveen dos terminales cuya polaridad se identifica mediante colores: Negro (-) y Rojo (+).
Los terminales se ubican en diferentes zócalos, unos son para medica de circuitos con corriente alterna (AC) y otros para medidas de circuitos con corriente directa (DC). La polaridad de los terminales debe ser observada para conectar apropiadamente el instrumento.
protoboard:
El protoboard o «breadboard» en inglés es un tablero con orificios conectados eléctricamente entre si, habitualmente siguiendo patrones de líneas, en el cual se pueden insertar componentes electrónicos y cables para el armado y prototipado de circuitos electrónicos y sistemas similares. Está hecho de dos materiales, un aislante, generalmente un plástico, y un conductor que conecta los diversos orificios entre si. Uno de sus usos principales es la creación y comprobación de prototipos de circuitos electrónicos antes de llegar a la impresión mecánica del circuito electrónico en sistemas de producción comercial.

partes del protoboard:
  • Protoboard o breadboard: Es en la actualidad una de las placas de prueba más usadas. Está compuesta por bloques de plástico perforados y numerosas láminas delgadas, de una aleación de cobre, estaño y fósforo, que unen dichas perforaciones, creando una serie de líneas de conducción paralelas. Las líneas se cortan en la parte central del bloque para garantizar que dispositivos en circuitos integrados tipo DIP (Dual Inline Packages) puedan ser insertados perpendicularmente y sin ser tocados por el provedor a las líneas de conductores. En la cara opuesta se coloca un forro con pegamento, que sirve para sellar y mantener en su lugar las tiras metálicas.

circuito en serie:
Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos los cuales estan unidos para un solo circuito (generadores, resistencias, condensadores, interruptores, entre otros.) se conectan secuencialmente. La terminal de salida del dispositivo uno se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise.
circuito rlc:
En electrodinámica un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y uncondensador (capacidad).
Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describen generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primero orden).
Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno deresonancia, caracterizado por un aumento del corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencia que lo rige).
circuito en paralelo:
el circuito eléctrico en paralelo es una conexión donde los puertos de entrada de todos los dispositivos (generadores, resistencias,condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.
sin embargo todos los circuitos imbolucrados tienen un riesgo muy cerbero ante una micera gota de agua ambos a la vez Las bombillas de iluminación de una casa forman un circuito en paralelo, gastando así menos energía.
En función de los dispositivos conectados en paralelo, el valor total o equivalente se obtiene con las siguientes expresiones


operadores mecanicos:
palancas:
La palanca es una máquina simple que tiene como función transmitir una fuerza y un desplazamiento. Está compuesta por una barra rígida que puede girar libremente alrededor de un punto de apoyo llamado fulcro.
Puede utilizarse para amplificar la fuerza mecánica que se aplica a un objeto, para incrementar su velocidad o la distancia recorrida, en respuesta a la aplicación de una fuerza.

bielas:
Se denomina biela a un elemento mecánico que sometido a esfuerzos de tracción o compresión, transmite el movimiento articulando a otras partes de la máquina. En un motor de combustión interna conectan el pistón al cigüeñal.
Actualmente las bielas son un elemento básico en los motores de combustión interna y en loscompresores alternativos. Se diseñan con una forma específica para conectarse entre las dos piezas, el pistón y el cigüeñal. Su sección transversal o perfil puede tener forma de H, I o + . El material del que están hechas es de una aleación de acero, titanio o aluminio. En la industria automotor todas son producidas por forjamiento, pero algunos fabricantes de piezas las hacen mediante maquinado.

manivela:
Se llama manivela a la pieza normalmente de hierro, compuesta de dos ramas, una de las cuales se fija por un extremo en el eje de una máquina, de una rueda, palanca etc. y la otra forma el mango que sirve para mover al brazo, la máquina o la rueda. Puede servir también para efectuar la transformación inversa del movimiento circular en movimiento rectilíneo.1Cuando se incorporan varias manivelas a un eje, éste se denomina cigüeñal.
El mecanismo de biela y manivela es extensamente empleado en diversas máquinas, fundamentalmente para transformar el movimiento alternativo de los pistones de un motor de combustión interna en movimiento rotatorio de otros componentes.

cigüeñal:
Un cigüeñal o cigoñal1 es un eje acodado, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela - manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En los motores de automóviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigueñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.


polea:
Una polea, es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde, que, con el curso de una cuerda o cable que se hace pasar por el canal ("garganta"), se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.
Según definición de Hatón de la Goupillière, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa»1 actuando en uno de sus extremos la resistencia y en otro la potencia
engranaje:
Se denomina engranaje o ruedas dentadas al mecanismo utilizado para transmitir potencia de un componente a otro dentro de una máquina. Los engranajes están formados por dos ruedas dentadas, de las cuales la mayor se denomina corona' y el menor 'piñón'. Un engranaje sirve para transmitirmovimiento circular mediante contacto de ruedas dentadas. Una de las aplicaciones más importantes de los engranajes es la transmisión del movimiento desde el eje de una fuente de energía, como puede ser un motor de combustión interna o un motor eléctrico, hasta otro eje situado a cierta distancia y que ha de realizar un trabajo. De manera que una de las ruedas está conectada por la fuente de energía y es conocido como engranaje motor y la otra está conectada al eje que debe recibir el movimiento del eje motor y que se denomina engranaje conducido.1 Si el sistema está compuesto de más de un par de ruedas dentadas, se denomina 'tren.
La principal ventaja que tienen las transmisiones por engranaje respecto de la transmisión por poleas es que no patinan como las poleas, con lo que se obtiene exactitud en la relación de transmisión.

polipasto:
Se llama polipasto a una máquina que se utiliza para levantar o mover una carga con una gran ventaja mecánica, porque se necesita aplicar una fuerza mucho menor que el peso que hay que mover. Lleva dos o más poleas incorporadas para minimizar el esfuerzo.
Se utilizan en talleres o industrias para elevar y colocar elementos y materiales muy pesados en las diferentes máquinas-herramientas o cargarlas y descargarlas de loscamiones que las transportan. Suelen estar sujetos a un brazo giratorio acoplado a una máquina, o pueden ser móviles guiados por rieles colocados en los techos de las naves industriales.
Los polipastos tienen varios tamaños o potencia de elevación; los pequeños se manipulan a mano y los más grandes llevan incorporados un motor eléctrico.


tornillo:
Se denomina tornillo a un elemento u operador mecánico cilíndrico con una cabeza, generalmente metálico, aunque pueden ser de madera o plástico, utilizado en la fijación temporal de unas piezas con otras, que está dotado de una caña roscada con rosca triangular, que mediante una fuerza de torsión ejercida en su cabeza con una llave adecuada o con undestornillador, se puede introducir en un agujero roscado a su medida o atravesar las piezas y acoplarse a una tuerca.1
El tornillo deriva directamente de la máquina simple conocida como plano inclinado y siempre trabaja asociado a un orificio roscado.2 Los tornillos permiten que las piezas sujetas con los mismos puedan ser desmontadas cuando la ocasión lo requiera
.

máquinas simples:
Una máquina simple es un artefacto mecánico que transforma un movimiento en otro diferente, valiéndose de la fuerza recibida para entregar otra de magnitud, dirección o longitud de desplazamiento distintos a la de la acción aplicada.1
En una máquina simple se cumple la ley de la conservación de la energía: «la energía ni se crea ni se destruye; solamente se transforma». La fuerza aplicada, multiplicada por la distancia aplicada (trabajo aplicado), será igual a la fuerza resultante multiplicada por la distancia resultante (trabajo resultante). Una máquina simple, ni crea ni destruye trabajo mecánico, sólo transforma algunas de sus características.
Máquinas simples son la palanca, las poleas, el plano inclinado, etc.
No se debe confundir una máquina simple con elementos de máquinas, mecanismos o sistema de control o regulación de otra fuente de energía.

No hay comentarios:

Publicar un comentario en la entrada